

API Workflow: Timeline

Table of Contents

Summary
Structured and Unstructured Data
Events in Timelines

Use Cases

Data Configuration Prerequisites

Step by Step
Step 1: Know the Timeline ID
Step 2: Know the Event Category
Step 3: Add an Event Category
Step 4: Know the Event Type
Step 5: Add the Event Type
Step 6: Add a New Timeline View
Step 7: View a Timeline

Without Filters
With Filters
With Rendering Context

Step 8: Put an Event on the Timeline
Core Event Managed by Events API
Custom Event

Step 9: Make New Event Type Visible on the Platform

Appendix A: Accessing Timeline Data from a Browser

1

Summary
Timelines record various types of temporal events, each with its own different set of data
attributes. There is no limit to the size or type of timeline you can define. While a user event
timeline is typical, others, such as campaign or point of sale timelines, can also be created.
Having multiple timelines allows you to keep events logically separated along service
boundaries and not easily intermingled.

The Timeline APIs are organized into three basic sets of functionality:

● Timeline Service API allows you to build and manage an event timeline service. It offers
the ability to define different kinds of timelines that consume raw data from external
devices generating events.

● Timeline Event Types API allows you to construct and maintain event types that can be
shown in an event timeline. Event types correspond to actions taken by organizations
and customers. Event types can be grouped by category. This API also supports the
ability to associate templates to specific event types.

● Timeline Configuration API includes methods that can constrain a very large timeline
with views that read from the timeline service and inject context into the raw event data
being presented. This API includes methods for creating event templates and rendering
contexts for these views.

Structured and Unstructured Data
The SM Platform relies on a combination of structured and unstructured data storage to provide
our clients with a high performance solution.

Structured data can be a timeline for a specific customer and likely contains several meaningful
properties. Structured data has been optimized for display. The primary display is the activity log
presentation in various SMP UI screens. These core applications perform transactions via SMP
server-to-server APIs implemented in Ruby. These public APIs create and manage meaningful
data constructs such as timelines, views, event types and event categories.

Unstructured data, on the other hand, is really just raw data with a timestamp and a timeline
reference. It is payload data that has been built in both Java or Go and has been optimized for
speed. This data is pulled from an SQL-based data store and can be accessed with an internal
Timeline APIs written in Java.

The Timeline APIs provide ways of accessing structured data from an unstructured data store.
The APIs offer critical services to many other APIs that need to access customer events, which
are stored in timelines.

2

https://docs.sessionm.com/server2server/#timeline-service-api
https://docs.sessionm.com/server2server/#timeline-event-types-api
https://docs.sessionm.com/server2server/#timeline-configuration-api

Events in Timelines
Events flow into timelines. They get written to a timeline at a variety of ingestion points. The
Events API is an ingestion point. Others, for example, include APIs for transactions, offers and
POS domains. Events can be associated with:

● Activity - Any predefined, customer-triggered event that indicates a customer has
performed a particular behavior. Examples of basic activity events range from digital
engagement with content, such as opening an app or clicking on a web form, to other
simple activity events, such as abandoning a shopping cart within a mobile app or on an
e-commerce site. May optionally include additional event attributes such as a count for
the number of times the event has occurred and the date of its occurrence.

● Location - A customer-triggered event that indicates a location-specific activity such as a
customer entering, leaving, staying at, or checking into a particular venue or set of
venues. These events can enable the caller of the API to trigger location-specific content
and messaging. Common metadata includes location-specific information such as the
device location of the event (longitude, latitude), geofence crossed, venue and time of
the event.

● Purchase - A customer-triggered event that indicates purchases such as a transaction
value and, optionally, an item code or SKU. These events enable the caller of the API to
trigger content and messaging based on SKU-level purchase events.

● State Change - Data reflecting customer state changes associated with events.
Generally, these events are not static, but rather defined for customers relative to a point
in time. For example, events might include using a loyalty card, submitting a survey, or
celebrating a birthday. When events occur, state changes accompany them, such as
changing from one tier to another or opting in/out of a loyalty program. There is often a
boolean attribute flipping from one state to another.

Use Cases
These use cases are typical for the Timeline API:

● Loyalty application to display user activity in a widget on a mobile application.
● Client web application to display user customer service notes in a preferences center

application interface.

Data Configuration Prerequisites
This workflow requires that your customer success representative or integration engineer has
ensured that the system has been configured. This process includes configuring log files to
communicate with queues as well as setting up a few different timeline services.

3

Step by Step
The workflow for displaying specific data from a timeline follows the step-by-step decision tree
diagrammed below:

4

The sections that follow reflect the decisions and actions detailed in this diagram. Note that
throughout this workflow external IDs are featured in the specification of endpoints, but internal
IDs can also be used.

When issuing curl commands for platform transactions, adhere to the following syntax:

● Begin each curl command with either POST or GET .
● Specify: -H 'Content-Type: application/json' -H

'authorization: Basic AUTH_ID'

● Begin URL with same endpoint + API key:
https://[ENDPOINT]/priv/v1/apps/API_KEY

Step 1: Know the Timeline ID
By default, the timeline, or stream, shows all event data. The first step for defining the data you
want to display from a timeline is knowing which timeline you want to work with. If you know the
timeline, note its ID and proceed to Step 2. The timeline ID is used for subsequent queries and
is dependant on environment.

If you don’t know it, you need to discover it from among the system’s existing timelines. Using
the Timeline Service API, specify this endpoint to see which timelines exist in the system:

GET /v1/apps/:api_key/timelines/streams

After the endpoint makes the request for timelines, the platform returns a response object,
which is shown below:

Response

{

"status": "ok",

"streams": [

{

"stream": {

"created_at": "2017-07-28T15:52:49Z",

"disabled": false,

"event_stream_stream_type_id": 1,

"id": 14,

"organization_id": 13,

"updated_at": "2017-07-28T15:52:49Z"

}

}

]

}

5

This response shows that the system has a single timeline (represented by the stream object)
with an ID of 14. For more information, see Retrieve All Timeline Services.

Now, having identified the single timeline in the system, you can view what event categories
have been configured for the system and then determine whether or not you need to add a new
one for the data you want to present.

Step 2: Know the Event Category
The second step for defining the data you want to display from a timeline is knowing the event
categories of the event types you want to show. Note that the platform is pre-configured with a
collection of event categories for several kinds of data, including points, offers, transactions and
campaigns. So it’s entirely possible that the category you want to display already exists.

If you know the event category, note its ID and proceed to Step 4. If you don’t know it, you can
discover what event categories already exist in the system. Without knowing the categories,
subsequent API calls may create redundant data. Using the Timeline Event Types API, specify
this endpoint to retrieve all event categories for all timelines, which, in this workflow, happens to
be a single timeline:

GET /v1/apps/:api_key/timelines/categories

After the endpoint makes the request for categories, the platform returns a response object,
which is shown below:

Response

{

"status": "ok",

"result": [

{

"event_category": {

"created_at": "2017-07-28T15:52:49Z",

"description": null,

"id": 118,

"name": "POINTS",

"organization_id": 13,

"slug": "POINTS",

"updated_at": "2017-07-28T15:52:49Z"

}

},

.....Truncated...

]

}

6

https://docs.sessionm.com/server2server/#retrieve-all-timeline-services

This truncated response shows that the system has a single event category with a name of
POINTS. For more information, see Retrieve Event Categories.

Now, having identified the existing event categories configured for the system, you can either
note the one you want to use or add a new one.

Step 3: Add an Event Category
If you don’t see the event category you need, you may need to create one. The third step for
defining what data to show from a timeline is adding an event category for the kind of events
you want to present. After verifying the categories in the previous step, you can ensure that the
new category you create serves a new business or integration purpose.

Using the Timeline Event Types API, specify a new category in the endpoint with a category
name. The new event category shown in the endpoint below is Z_POINTS:

POST /v1/apps/:api_key/timelines/categories?category[name]=Z_POINTS

After the endpoint makes the request for categories, the platform returns a response object,
which is shown below:

Response

{

"status": "ok",

"event_category": {

"updated_at": "2018-06-26T13:56:20Z",

"created_at": "2018-06-26T13:56:20Z",

"slug": "Z_POINTS",

"id": "120",

"name": "Z_POINTS"

}

}

This response shows the addition of the Z_POINTS category, with an ID of 120. For more
information, see Create an Event Category. Note that event categories are not visible on their
own. Each event type must be individually specified in a rendering context, a step discussed
below.

Now, having identified or created a new event category, you can determine what event type to
display within that event category.

7

https://docs.sessionm.com/server2server/#retrieve-event-categories
https://docs.sessionm.com/server2server/#create-an-event-category

Step 4: Know the Event Type
The fourth step for defining what data to present from a timeline is knowing or creating the event
type you want to show.

Event types are business actions. Currently, there is no way to validate the existing business
event types in the system. However, you do have two options for discovering an existing one:

● You can consult your customer success representative or integration engineer for
assistance in identifying the system’s existing event types.

● You can consult the following list of the platform’s default categories/types:

Category Types

CAMPAIGNS EMAIL_OPENED
PUSH_MESSAGE_OPENED
VIDEO_WATCHED

LOYALTY KEYWORD_ENTERED
LOYALTY_CARD_LINKED
LOYALTY_RULE_ACHIEVED
REGISTRATION
USER_TAG_DROPPED

NOTES NOTE_ADDED

OFFERS GIFT_REDEEMED
OFFER_CLAIMED
OFFER_REDEEMED

POINTS POINTS_AWARDED
POINTS_COMPED
POINTS_EARNED
POINTS_USED

PROMO_CODES PROMO_CODE_RECEIVED
PROMO_CODE_USED

PURCHASE PURCHASE

PURCHASE_TRANSACTIONS PURCHASE_TRANSACTION

TIERS TIER_ADVANCED
TIER_RESET
TIER_TRANSIT

8

If you know the event type you intend to display data for, note it and proceed to Step 6. If you
don’t, you can add one according to the discussion below.

Step 5: Add the Event Type
If you don’t know the event type, the fifth step for defining what data gets presented from the
timeline is creating a new one. Using the Timeline Event Types API, specify this endpoint to
create an event type for a timeline:

POST /v1/apps/:api_key/timelines/14/event-types

Note that the parameter 14 included in this endpoint is the timeline ID, which is shown as the id
attribute of the stream object returned in the response featured in Step 1.

The endpoint passes in the event_type request object for a new event type called PURCHASE.

Request

{

 "event_type": {

 "description": "New Purchase Event",

 "event_stream_event_category_id": 120,

 "name": "PURCHASE"

 }

}

This request for the new event type contains an event_stream_event_category_id. Its value is
set to 120 because that is the id associated with the event_category object named “Z_POINTS,”
which is returned in the response featured in Step 3. In effect, event_stream_event_category_id
in this event_type request object maps to id of the event_category response object depicted in
Step 3.

The platform then returns a response object:

Response

{

 "status": "ok",

 "event_type": {

 "description": "New Purchase Event",

 "event_stream_event_category_id": 120,

 "id": 1235,

 "event_stream_stream_id": 14,

9

 "slug": "PURCHASE",

 "name": "PURCHASE"

 }

}

This response shows the newly added event type PURCHASE with its corresponding event
category (event_stream_event_category_id) of 120 and a timeline ID (event_stream_stream_id)
of 14. Note too that the new event type’s id is 1235. For more information, see Create an Event
Type.

Now, with the event type discovered in Step 4 or created in Step 5, you can add a new timeline
view.

Step 6: Add a New Timeline View
The sixth step for defining the data you want to present from a timeline is adding a new timeline
view. The timeline view captures whatever subset of the timeline’s entire event history that you
want to present. It is the bare minimum that is required to call the timeline for a particular user.
Using the Timeline Configuration API, specify this endpoint to create a new view for a timeline,
which is represented in the endpoint as the event_stream_stream_id, an integer of 14:

POST /v1/apps/:api_key/timelines/14/views

The endpoint passes in the stream_view request object for a view called NEW_VIEW. This view
is filtered by since and count values, which are set in the query attribute, as shown below:

Request

{

"stream_view": {

"query": "since, count",

"event_stream_stream_id": 14,

"name": "NEW_VIEW",

"description": "A new view on our data"

}

}

The platform then returns a response object:

Response

{

"status": "ok",

10

https://docs.sessionm.com/server2server/#create-an-event-type
https://docs.sessionm.com/server2server/#create-an-event-type

"stream_view": {

"description": "A new view on our data",

"id": 59,

"query": "since, count",

"event_stream_stream_id": 14,

"slug": "NEW_VIEW",

"name": "NEW_VIEW"

}

}

This response shows the newly added stream_view object with a name of NEW_VIEW and a
corresponding event_stream_stream_id (timeline ID) of 14. For more information, see Create a
Timeline View.

At this point in the workflow, we have obtained or created a new event category and event type
as well as a view of the timeline data that is filtered using the since and count attributes. For
more information on these attributes, review the “Endpoints” section for Retrieve Events for a
Single View.

Step 7: View a Timeline
Now that you have defined the view of the timeline that you want, you can actually present it in
this seventh step of the workflow. For example, you might be displaying customer activity in a
mobile app or the SMP UI. Whatever the use case, the platform provides three different ways of
showing a view:

● Without Filters
● With Filters
● With Rendering Context

Without Filters
When you view a timeline without any filters, the timeline displays the maximum number of
events. With this view, you can pull the timeline and retrieve all data for the customer. The
pattern below depicts a client app making a call to retrieve a complete customer timeline,
without any data filtered out.

11

https://docs.sessionm.com/server2server/#create-a-timeline-view
https://docs.sessionm.com/server2server/#create-a-timeline-view
https://docs.sessionm.com/server2server/#retrieve-events-for-a-single-view
https://docs.sessionm.com/server2server/#retrieve-events-for-a-single-view

Use the Timeline Service API to specify this endpoint and retrieve and view a timeline without
any filters:

GET

/v1/apps/:api_key/external/users/{{external_id}}/timelines/NEW_VIEW

After the endpoint makes the request for the entire, unfiltered timeline, the platform returns a
response object, which is shown below:

Response

{

"status": "ok",

"result": [

{

"target_id": 114910,

"event_stream_stream_id": "14",

"event_stream_event_type_id": 1235,

"event_stream_event_category_id": 120,

"timestamp": 1530219732000,

"created_at": 1531166534000,

"event_stream_payload": {

"parent_name": "Slug",

"country": "USA",

"event_type_slug": "PURCHASE",

"timezone": "+00:00",

"channel": "InStore",

12

"description": "",

"external_id": {

"key": "external_id",

"value": "zlwxIOdXjpLLr4zx",

"parent": "",

"type": "MAPPED"

},

"rewards_system_id": "6",

"player_id": {

"key": "player_id",

"value": "114910",

"parent": "",

"type": "MAPPED"

},

"model_type_name": "",

"event_category_name": "Z_POINTS",

"transaction_time": {

"key": "transaction_time",

"value": "1530219732.0",

"parent": "",

"type": "MAPPED"

},

"currency": "457",

"developer_id": "13",

"sub_channel": "Mobile",

"model_type_id": "",

"transaction_id": "RR6cyohSraGIxqG5",

"used_msr_reward": "false",

"amount": "2070.0",

"awarded_merchant_points": "",

"award_limit_reached": "",

"card_number": "",

"retailer": "",

"price_amount": "2070.0",

"store": "R2q",

"model_id": "",

"transaction_type": "Create",

"application_id": "145",

"event_type_name": "PURCHASE",

"override_price_amount": "",

"event_category_slug": "Z_POINTS",

"user_id": "8fd97dda-83b2-11e8-9e43-f75d1b1d641c",

"subtotal": "2070.0",

"qty": "1",

"name": "Hy1KVfajuL",

"discount_price_amount": "0",

"postal_code": "01875",

"request_id": "f80256c0-83b2-11e8-9fd8-6a371b1d641c"

},

"contexts": [

{

}

]

13

},

...Truncated...

],

"grouping_field": null

}

For more information, see Retrieve Events for a Single View.

If the timeline view without filters is not your preference, you can choose to view a timeline with
filters, which is addressed below.

With Filters
When you view a timeline with a combination of filters, you reduce the number of events being
shown in the view. The pattern below depicts a client app making a call to retrieve a customer
timeline, filtering with Since and Count values.

Using the Timeline Service API, you can specify an endpoint that retrieves and views a timeline
with several active filters. These filters can be passed as parameters in the endpoint URL. Here
are the possible filter types, each with an example:

● Context slug: context_slug=ABC
● Since: since=1484585770
● Count: count=2
● Event Category ID: filter[event_category_id]=123
● Event Type IDs (multiple): event_types=12,13,14
● Target ID: Internal ID from SessionM

14

https://docs.sessionm.com/server2server/#retrieve-events-for-a-single-view

For more information on these parameters, see the "Endpoint Parameters" section of Retrieve
Events for a Single View.

The following endpoint utilizes parameters for count, since, event types and event category:

GET

/v1/apps/:api_key/external/users/{{external_id}}/timelines/NEW_VIEW?count

=1

&since=1530045547&event_types=12,13,14&filter[event_category_id]=123

After the endpoint makes the request for the filtered timeline, the platform returns a response
object similar to the one shown in Without Filters. Bear in mind that by adding filters to your
GET, you reduce the number of events that appear in the response.

If the timeline view with or without filters is not your preference, you can choose to view a
timeline with a rendering context, which is addressed below.

With Rendering Context
When you create a custom view with a rendering context, you avoid filtering a view with
SessionM event type or event type category IDs. In this case, you can create a custom
rendering context for your timeline using the Timeline Event Types and Timeline Configuration
APIs in conjunction with the SessionM Platform UI.

A rendering context specifies a context for a view to be presented in an associated template.
For example, you could define a rendering context for customers engaged in an iOS-based
mobile experience. In addition, the context could be associated with an event template, along
with its association to an event type. Once a rendering context has been created, it is not
editable via any platform APIs; so if any mistakes are made, consult your SessionM customer
success representative or integration engineer.

Note: A rendering context is somewhat like an inverse filter. Nothing is shown until you explicitly
add a reference from an event type to the rendering context. A rendering context without any
links returns no results.

The pattern below depicts a client app making a call to retrieve a customer timeline using a
rendering context.

15

https://docs.sessionm.com/server2server/#retrieve-events-for-a-single-view
https://docs.sessionm.com/server2server/#retrieve-events-for-a-single-view

The following procedure guides you through the steps required to create a rendering context for
a customer:

1. Retrieve the event_type_id by using your browser’s inspector function to locate the
corresponding event_stream_event_type_id in the activity feed for your customer. For
more information, see Appendix A.

2. With the event_type_id, you can use the Retrieve Rendering Templates API to retrieve a
rendering template ID, which is specified by event_stream_event_template_id.

3. Add a new timeline view as per Step 6: Add a New Timeline View. Note the ID - in this
case 59 - shown in the stream_view response object. You can then specify this ID as the
event_stream_stream_view_id parameter in the endpoint shown in step 5 of this
procedure.

Or, alternatively, you can get all of the necessary stream view details for an existing view
by using the Retrieve Details on a Timeline View API.

4. Now create an event_stream_rendering_context_id by running a valid curl like this:

POST /v1/apps/:api_key/timelines/rendering_contexts

?rendering_context[name]=name_here

The platform returns the following response:

Response

{

 "status": "ok",

16

https://docs.sessionm.com/server2server/#retrieve-rendering-templates
https://docs.sessionm.com/server2server/#retrieve-details-on-a-timeline-view

 "rendering_context": {

 "id": 56,

 "name": "api:event2",

 "slug": "API_EVENT2",

 "organization_id": 13

 }

}

5. Finally, with all the data collected in this procedure, you can add the event_type to the

event stream rendering context. For example:

POST

/v1/apps/:api_key/timelines/{{stream_id}}/event-types/{{event_

type_id}}/templates?rendering_template[event_stream_event_temp

late_id]={{event_stream_event_template_id}}&rendering_template

[event_stream_stream_view_id]={{event_stream_stream_view_id}}&

rendering_template[event_stream_rendering_context_id]={{event_

stream_rendering_context_id}}&rendering_template[version]={{ve

rsion}}

The platform returns the following response:

Response

{

 "status": "ok",

 "rendering_template": {

 "id": 1158,

 "event_stream_event_template_id": 1227,

 "event_stream_stream_view_id": 59,

 "event_stream_rendering_context_id": 56,

 "version": 1

 }

}

6. Now, with your new rendering context defined, you can call it:

GET /v1/apps/:api_key/ timelines/GROUPED_VIEW?context_slugs=name_here

The platform returns a response that is similar to what’s returned for a timeline request in
Without Filters.

17

Now that you have defined an event category and type, along with an associated view, it’s time
to generate some events on the timeline that can be displayed later in that view.

Step 8: Put an Event on the Timeline
Timelines record events. So, before you can see a particular view of timeline data, you need
some actual events to see! Therefore, the eighth step of this workflow is putting an actual event
on the timeline, one that can be displayed or rendered. You can add two kinds of events:

● Core Event Managed by Events API
● Custom Event

Core Event Managed by Events API
When you add a core event, you define it with attributes that make it available to the other
modules on the platform. This metadata, or logic, makes them integral to other kinds of platform
objects, such as campaigns and offers. Core events are also written to platform logs.

Using the Events API, specify this endpoint to create an event on the timeline:

POST /v1/apps/:api_key/external/users/{{external_id}}/events

The endpoint passes in the events request object for a purchase event for an amount of 1741,
which is shown below:

Request

{

"events": {

"purchase": [

{

"parent_name": "Racer",

"price_amount": 1741,

"name": "YZSC9l7DNF",

"currency": "457",

"sub_channel": "Mobile",

"transaction_id": "coUxkGSFpTDu1nn0",

"qty": 1,

"item": "Racer",

"amount": 1741,

"postal_code": "01875",

"store": "cYG",

"time": 1529826439,

"transaction_type": "purchase",

"subtotal_amount": 1741,

"country": "USA",

18

"channel": "InStore"

}

]

}

}

Note that one way data is defined in the request object is via the SMP Transactions domain API.
Documentation for this API is anticipated for Q1 of 2019.

The platform returns a response object:

Response

{

"status": "ok",

"available_points": 610,

"notifications": [

],

"user": {

"available_points": 610,

"tier": "GOLD",

"deltas": {

"available_points": 244

}

},

"behaviors": {},

"deltas": {}

}

This response shows a purchase made by a customer with GOLD tier status whose available
points decreased by 244, leaving 610 available points. For more information, see Create an
Event for a Customer.

Alternatively, you may want to create a custom event that is not available to other platform
modules. This custom event is discussed below.

Custom Event
When you create a custom event, you add it directly to the timeline, bypassing all processing
from the other SessionM modules. This is a perfect solution for customer data that needs to be
displayed in the platform but NOT processed by our system for campaigns, points, offers, etc.
Using the Timeline Service API, specify this endpoint to add a custom event - not a core
SessionM event - to a timeline:

19

https://docs.sessionm.com/server2server/#create-an-event-for-a-customer
https://docs.sessionm.com/server2server/#create-an-event-for-a-customer

POST

/v1/apps/:api_key/external/users/{{external_id}}/timelines/{{timeline_id

}}

The endpoint passes in the event request object, which is shown below:

Request

{

"timestamp": "2017-06-05 12:30:00",

"transactional": false,

"stream_type": "USER",

"event_type": "YPURCHASE",

"payload": {

}

}

The platform returns a response object:

Response

{

"status": "ok",

"result": {

"saved": 121

}

}

For more information on using this endpoint and its request object, see Publish an External
Event into a Timeline.

With an event added to the timeline, you can now make data for the corresponding event type
visible on the platform.

Step 9: Make New Event Type Visible on the Platform
One common use case for timeline data associated with an event type is making it visible in the
SMP UI. This ninth step of the workflow makes the data for the new event type visible on the
platform’s activity log.

Before you begin, you may want to ensure that the activity log shown in the SMP is enabled.
Consult your customer success representative or integration engineer to verify that the following
settings are enabled in the Timeline Series Config tab of the Super Admin page, which is
located in the Admin & Rights 2.0 Module:

20

https://docs.sessionm.com/server2server/#publish-an-external-event-into-a-timeline
https://docs.sessionm.com/server2server/#publish-an-external-event-into-a-timeline

● Stream view: end_user_member_statement
● Rendering context: mmc_customer_campaigns

To make your new event type appear in the SMP:

1. Using the Timeline Configuration API, define an event template for the event type with
following endpoint and request object:

POST /v1/apps/:api_key/timelines/event_templates

Request

{

 "event_template": {

 "html": "<p>{{event_category_slug}} {{storenumber}}

{{event_type_slug}}</p>",

 "plain_text": "plain text",

 "event_stream_event_type_id": 46

 }

}

The platform returns the following response:

Response

{

 "status": "ok",

 "event_template": {

 "html": "<p>{{event_category_slug}} {{storenumber}}

{{event_type_slug}}</p>",

 "plain_text": "plain text",

 "id": 46,

 "event_stream_event_type_id": 46

 }

}

2. Using the Timeline Event Types API, assign this new event template to the rendering

context and view it as a rendering template with this endpoint and request object:

POST

/v1/apps/:api_key/timelines/[STREAM_ID]/event-types/[EVENT_TYP

E_ID]/templates

21

Request

{

 "rendering_template": {

 "event_stream_stream_view_id": 1,

 "version": 1,

 "event_stream_event_template_id": 46,

 "event_stream_rendering_context_id": 1

 }

}

The platform returns the following response:

Response

{

 "status": "ok",

 "rendering_template": {

 "event_stream_stream_view_id": 1,

 "event_stream_rendering_context_id": 1,

 "id": 46,

 "version": 1,

 "event_stream_event_template_id": 46

 }

}

3. If some of your event types have not displayed on the SMP, you can have your

integration engineer run the following query to find missing event templates and/or
rendering templates.

SELECT typ.id event_type_id, typ.name, cat.id, cat.name,

tmpl.id event_template_id, tmpl.html, rt.id

rending_template_id, sv.slug view_slug, rc.slug

rendering_context_slug

FROM event_stream_event_types typ

inner join event_stream_event_categories cat on cat.id =

typ.event_stream_event_category_id

left outer join event_stream_event_templates tmpl on

tmpl.event_stream_event_type_id = typ.id

left outer join event_stream_rendering_templates rt on

rt.event_stream_event_template_id = tmpl.id

left outer join event_stream_stream_views sv on sv.id =

rt.event_stream_stream_view_id

22

left outer join event_stream_rendering_contexts rc on rc.id =

rt.event_stream_rendering_context_id

23

Appendix A: Accessing Timeline Data from a
Browser
Once you have completed the timeline workflow, you can access and view timeline data from a
browser by performing the following steps:

1. In the Customers Module of the SMP UI, use the Search For Customers dialog to locate
the customer profile that has the event you want to target:

The customer profile opens with the Activity Log displayed.

2. In the Activity Log table, right click any entry and, from the list of options, pick Inspect
Element (in Safari) or Inspect (in Google Chrome), as shown below:

24

A new inspect page opens in the browser.

3. Go to the Network tab and refresh the page. A file called data.json will appear containing
the activity stream in JSON format, as shown below:

25

As shown in the JSON file, the event type ID is event_stream_event_type_id; the event
category ID is event_stream_event_category_id and so on.

Note that should errors occur as you perform the steps in this procedure, it can mean that your
timeline services are set up incorrectly. For more information, consult your customer success
representative or integration engineer.

26

