

API Workflow: User Points Management

Table of Contents

Summary

Use Case Sequence

Data Configuration Prerequisites

Step by Step with Examples
Step 1: Retrieve Available Balance for Customer Point Accounts

Fetching a Balance for Specified or Default Point Accounts
Fetching a Balance for All Point Accounts

Step 2: Increase or Decrease Balance of Customer Point Accounts
Increasing a Point Balance
Decreasing a Point Balance

1

Summary
This workflow features the UserPoints API, which is part of the Incentives domain. It details the
primary transactions that can be performed for tasks related to managing a user’s point
balances.

Use Case Sequence
The sequence for this use case is:

1. Fetch customer’s point balance:
a. From default account.
b. From specified point account(s).
c. From all of their existing accounts.

2. Increase or decrease the point balance from the account(s).

Data Configuration Prerequisites
This flow assumes that at least one point source and point account have been configured within
the SMP for a given retailer.

Step by Step with Examples
Featured in this workflow is the UserPoints API. It allows you to fetch, decrease (spend), or
increase (deposit) a customer’s point balance.

When issuing curl commands for these transactions, adhere to the following syntax:

● Begin each curl command with either POST .
● Specify: -H 'Content-Type: application/json' -H

'authorization: Basic AUTH_ID'

● Begin URL with same endpoint:
https://[ENDPOINT]/api/1.0/user_points

2

Step 1: Retrieve Available Balance for Customer Point Accounts
The first step in managing a customer’s point balance is to retrieve it. You can do this using one
of the two endpoints available in the API.

Fetching a Balance for Specified or Default Point Accounts
This endpoint allows you to specify fetch a balance from one or more point accounts. If your
loyalty program requires only a single point account, then the API returns the current balance
and lifetime historical balance for a given point account.

POST /api/1.0/user_points/balance

The endpoint passes in a request object that identifies which point account to use.

Request

{

 "retailer_id": "string",

 "user_id": "string",

 "point_account_ids": [

 "00000000-0000-0000-0000-000000000000"

]

}

The request object can contain one or multiple point account IDs. The key attribute in this object
is point_account_ids. If you don’t specify any IDs, the operation fetches the balance from the
customer’s default point account.

The platform returns a response object:

Response

{

 "response_payload": {

 "retailer_id": "string",

 "user_id": "string",

 "summary": {

 "total_points": 0,

 "life_time_points": 0

 },

 "details": [

 {

 "account_name": "string",

3

 "user_point_account_id": "string",

 "point_account_id": "string",

 "grouping_label": "string",

 "available_balance": 0,

 "life_time_value": 0

 }

]

 },

 "status": 0,

 "error_response": {

 "code": "string",

 "message": "string",

 "raw_message": "string",

 "stack_trace": "string"

 },

 "logs": [

 {

 "log_level": "Trace",

 "message": "string",

 "stack_trace": "string",

 "time_occurred": "2018-12-03T15:21:11.371Z",

 "duration": 0,

 "scope_observer_id": "00000000-0000-0000-0000-000000000000",

 "entity_id": "00000000-0000-0000-0000-000000000000"

 }

],

 "message": "string",

 "scope": {

 "retailer_id": "string",

 "event": "string",

 "extended_scope": {}

 },

 "request_payload": {},

 "authorized_integrator_id": "00000000-0000-0000-0000-000000000000",

 "started": "2018-12-03T15:21:11.371Z",

 "completed": "2018-12-03T15:21:11.371Z"

}

4

Fetching a Balance for All Point Accounts
Alternatively, you can use a different endpoint to fetch a balance that reflects all of the
customer’s point accounts. If your loyalty program requires multiple point accounts, then the API
returns the current balance and lifetime historical balance for all active point accounts.

POST /api/1.0/user_points/all_balances

This endpoint passes in a request object that contains no point account identifiers.

Request

{

 "retailer_id": "string",

 "user_id": "string"

}

The request object contains only IDs for the retailer and the customer.

The platform returns a response object:

Response

{

 "response_payload": {

 "retailer_id": "string",

 "user_id": "string",

 "summary": {

 "total_points": 0,

 "life_time_points": 0

 },

 "details": [

 {

 "account_name": "string",

 "user_point_account_id": "string",

 "point_account_id": "string",

 "grouping_label": "string",

 "available_balance": 0,

 "life_time_value": 0

 }

]

 },

 "status": 0,

 "error_response": {

 "code": "string",

 "message": "string",

5

 "raw_message": "string",

 "stack_trace": "string"

 },

 "logs": [

 {

 "log_level": "Trace",

 "message": "string",

 "stack_trace": "string",

 "time_occurred": "2018-12-03T15:21:11.389Z",

 "duration": 0,

 "scope_observer_id": "00000000-0000-0000-0000-000000000000",

 "entity_id": "00000000-0000-0000-0000-000000000000"

 }

],

 "message": "string",

 "scope": {

 "retailer_id": "string",

 "event": "string",

 "extended_scope": {}

 },

 "request_payload": {},

 "authorized_integrator_id": "00000000-0000-0000-0000-000000000000",

 "started": "2018-12-03T15:21:11.389Z",

 "completed": "2018-12-03T15:21:11.389Z"

}

Step 2: Increase or Decrease Balance of Customer Point
Accounts
Now, since the balance is known, you can increase (deposit) or decrease (spend) the
account(s).

Increasing a Point Balance
This endpoint allows you to deposit points into a customer’s account.

POST /api/1.0/user_points/deposit

The endpoint passes in a request object that specifies the points being deposited. It requires
both a point account and a point source:

Request

{

 "retailer_id": "string",

6

 "user_id": "string",

 "deposit_details": [

 {

 "point_source_id": "00000000-0000-0000-0000-000000000000",

 "amount": 0,

 "user_point_account_id": "00000000-0000-0000-0000-000000000000",

 "point_account_id": "00000000-0000-0000-0000-000000000000",

 "reference_id": "string",

 "reference_type": "string",

 "transaction_id": "00000000-0000-0000-0000-000000000000"

 }

]

}

The point_source_id attribute identifies the source, or origination point pool, for the points. For
example, clients may set up multiple point sources to track distinct liabilities for different
categories of points, such as base points, bonus points, and store-branded credit card p[oints.

The point_account_id attribute is required to specify into what account the points are to be
deposited and to increase the account’s existing point balance. Furthermore, the points inherit
the expiration policy associated with this point account.

The reference_id and reference_type attributes are optional but can be very useful when trying
to reconcile the point audit log to activity originating in a third-party system. For example, if the
API were to be invoked by a POS system, it would be useful to define the reference type as
POS and the reference ID as some transaction ID from the POS.

The transaction_id attribute is also optional; it too can be useful for reconciliation purposes. The
user_point_account_id attribute is optional and rarely required.

After the endpoint makes the request for the deposit, the platform returns a response object,
which is shown below:

Response

{

 "response_payload": {

 "retailer_id": "string",

 "user_id": "string",

 "tracking_id": "string",

 "details": [

 {

 "account_name": "string",

 "user_point_account_id": "string",

 "point_account_id": "string",

 "deposit_amount": 0,

7

 "available_balance": 0,

 "life_time_value": 0

 }

],

 "audits": [

 {

 "id": "string",

 "retailer_id": "string",

 "user_id": "string",

 "account_name": "string",

 "point_account_id": "string",

 "user_point_account_id": "string",

 "modification": 0,

 "amount_spent": 0,

 "amount_expired": 0,

 "audit_type": "Other",

 "modification_type": "string",

 "modification_entity_id": "string",

 "spend_weight": 0,

 "point_source_id": "string",

 "point_source_name": "string",

 "time_of_occurrence": "2018-12-03T15:21:11.438Z",

 "request_id": "string",

 "transaction_id": "string"

 }

]

 },

 "status": 0,

 "error_response": {

 "code": "string",

 "message": "string",

 "raw_message": "string",

 "stack_trace": "string"

 },

 "logs": [

 {

 "log_level": "Trace",

 "message": "string",

 "stack_trace": "string",

 "time_occurred": "2018-12-03T15:21:11.438Z",

 "duration": 0,

 "scope_observer_id": "00000000-0000-0000-0000-000000000000",

 "entity_id": "00000000-0000-0000-0000-000000000000"

 }

],

 "message": "string",

 "scope": {

 "retailer_id": "string",

 "event": "string",

 "extended_scope": {}

 },

 "request_payload": {},

 "authorized_integrator_id": "00000000-0000-0000-0000-000000000000",

8

 "started": "2018-12-03T15:21:11.438Z",

 "completed": "2018-12-03T15:21:11.438Z"

}

Decreasing a Point Balance
This endpoint allows you to spend points, reducing points in a customer’s account.

POST /api/1.0/user_points/spend

You can can choose to include or omit a specific point account in the request object. If the
object does not include a point account, the system uses the default point account set up in the
platform’s Point Management Module. Currently, the platform only supports a FIFO (first in first
out) spend policy. In other words, the oldest points will be spend first.

The endpoint passes in a request object that specifies the points being spent:

Request

{

 "retailer_id": "string",

 "user_id": "string",

 "amount": 0,

 "point_account_ids": [

 "00000000-0000-0000-0000-000000000000"

],

 "reference_id": "string",

 "reference_type": "string",

 "transaction_id": "00000000-0000-0000-0000-000000000000",

 "force_spend": true

}

The reference_id and reference_type attributes are optional but can be very useful when trying
to reconcile the point audit log to activity originating in a third-party system. For example, if the
API were to be invoked by a POS system, it would be useful to define the reference type as
POS and the reference ID as some transaction ID from the POS.

The transaction_id attribute is also optional; it too can be useful for reconciliation purposes.

The force_spend attribute is typically set to “false.” When set to “false,” the system follows all
parameters defined in the point account definition. For example, the system won’t allow the
customer to spend points they do not have. If force_spend is “true,” it will spend the points

9

regardless of whether or not the customer has sufficient balance. Depending on the point
account configuration, this event might result in the customer having a negative balance.

After the endpoint makes the request for the spend, the platform returns a response object,
which is shown below:

Response

{

 "response_payload": {

 "retailer_id": "string",

 "user_id": "string",

 "tracking_id": "string",

 "summary": {

 "amount_spent": 0,

 "remaining_balance": 0

 },

 "details": [

 {

 "account_name": "string",

 "user_point_account_id": "string",

 "point_account_id": "string",

 "amount_spent": 0,

 "remaining_balance": 0

 }

],

 "audits": [

 {

 "id": "string",

 "retailer_id": "string",

 "user_id": "string",

 "account_name": "string",

 "point_account_id": "string",

 "user_point_account_id": "string",

 "modification": 0,

 "amount_spent": 0,

 "amount_expired": 0,

 "audit_type": "Other",

 "modification_type": "string",

 "modification_entity_id": "string",

 "spend_weight": 0,

 "point_source_id": "string",

 "point_source_name": "string",

 "time_of_occurrence": "2018-12-03T15:21:11.411Z",

 "request_id": "string",

 "transaction_id": "string"

 }

]

 },

 "status": 0,

 "error_response": {

10

 "code": "string",

 "message": "string",

 "raw_message": "string",

 "stack_trace": "string"

 },

 "logs": [

 {

 "log_level": "Trace",

 "message": "string",

 "stack_trace": "string",

 "time_occurred": "2018-12-03T15:21:11.411Z",

 "duration": 0,

 "scope_observer_id": "00000000-0000-0000-0000-000000000000",

 "entity_id": "00000000-0000-0000-0000-000000000000"

 }

],

 "message": "string",

 "scope": {

 "retailer_id": "string",

 "event": "string",

 "extended_scope": {}

 },

 "request_payload": {},

 "authorized_integrator_id": "00000000-0000-0000-0000-000000000000",

 "started": "2018-12-03T15:21:11.411Z",

 "completed": "2018-12-03T15:21:11.411Z"

}

11

